Bibliography¶
General¶
- Car90
A. E. Carlsson, Beyond Pair Potentials in Transition Metals and Semiconductors, Solid State Physics 43, 1 (1990); series published by Academic Press, edited by H. Ehrenreich and D. Turnbull doi:10.1088/0965-0393/8/6/305
- StiWeb84
F. H. Stillinger and T. A. Weber, Computer simulation of local order in condensed phases of silicon, Phys. Rev. B 31, 5262 (1984); doi:10.1103/PhysRevB.31.5262
- Fre12
D. Frenkel, Simulations: the dark side, arXiv:1211.4440 [cond-mat.stat-mech]; download
Bond-order potentials¶
- Abe85
G. C. Abell, Empirical chemical pseudopotential theory of molecular and metallic bonding, Phys. Rev. B 31, 6148 (1985); doi:10.1103/PhysRevB.31.6184
- Ter86
J. Tersoff, New Empirical Model for the Structural Properties of Silicon, Phys. Rev. Lett. 56, 632 (1986); doi:10.1103/PhysRevLett.56.632
- Ter88a
J. Tersoff, New empirical approach for the structure and energy of covalent systems, Phys. Rev. B 37, 6991 (1988); doi:10.1103/PhysRevB.37.6991
- Ter88b
J. Tersoff, Empirical interatomic potential for silicon with improved elastic properties, Phys. Rev. B 38, 9902 (1988); doi:10.1103/PhysRevB.38.9902
- Ter88c
J. Tersoff, Empirical Interatomic Potential for Carbon, with Applications to Amorphous Carbon, Phys. Rev. Lett. 61, 2879 (1988); doi:10.1103/PhysRevLett.61.2879
- Ter89
J. Tersoff, Modeling solid-state chemistry: Interatomic potentials for multicomponent systems, Phys. Rev. B. 39, 5566 (1989); doi:10.1103/PhysRevB.39.5566
- Bre89
D. W. Brenner, Relationship between the Embedded-Atom Method and Tersoff Potentials, Phys. Rev. Lett. 63, 1022 (1989); doi:10.1103/PhysRevLett.63.1022
- Bre90
D. W. Brenner, Empirical potential for hydrocarbons for use in simulating the chemical vapor deposition of diamond films, Phys. Rev. B 42, 9458 (1990); doi:10.1103/PhysRevB.42.9458
- BreSheHar02
D. W. Brenner, O. A. Shenderov, J. A. Harrison, S. J. Stuart, B. Ni and S. B. Sinnott, A second-generation reactive empirical bond order (REBO) potential energy expression for hydrocarbons, J. Phys. Cond. Matter 14, 783 (2002); doi:10.1088/0953-8984/14/4/312
- AlbNorAve02
K. Albe, K. Nordlund, and R. S. Averback, Modeling the metal-semiconductor interaction: Analytical bond-order potential for platinum-carbon, Phys. Rev. B 65, 195124 (2002); doi:10.1103/PhysRevB.65.195124
- AlbNorNor02
K. Albe, K. Nordlund, J. Nord, and A. Kuronen, Modeling of compound semiconductors: Analytical bond-order potential for Ga, As, and GaAs, Phys. Rev. B 66, 035205 (2002); doi:10.1103/PhysRevB.66.035205
- NorAlbErh03
J. Nord, K. Albe, P. Erhart, and K. Nordlund, Modelling of compound semiconductors: Analytical bond-order potential for gallium, nitrogen and gallium nitride}, J. Phys. Cond. Matter 15, 5649 (2003); doi:10.1088/0953-8984/15/32/3245
- ErhAlb05
P. Erhart and K. Albe, Analytical Potential for Atomistic Simulations of Silicon and Silicon Carbide, Phys. Rev. B 71, 035211 (2005); doi:10.1103/PhysRevB.71.035211
- ErhJusGoy06
P. Erhart, N. Juslin, O. Goy, K. Nordlund, R. Müller, and K. Albe, Analytic bond-order potential for atomistic simulations of zinc oxide, J. Phys. Cond. Matter 18, 6585 (2006); doi:10.1088/0953-8984/18/29/003
- JusErhTra05
N. Juslin, P. Erhart, P. Träskelin, J. Nord, K. Henriksson, E. Salonen, K. Nordlund, and K. Albe, Analytical interatomic potential for modeling nonequilibrium processes in the W-C-H system, J. Appl. Phys. 98, 123520 (2005); doi:10.1063/1.2149492
- MulErhAlb07a
M. Müller, P. Erhart, and K. Albe, Analytic bond-order potential for bcc and fcc iron - comparison with established embedded-atom method potentials, J. Phys. Cond. Matter 19, 326220 (2007); doi:10.1088/0953-8984/19/32/326220
- MulErhAlb07b
M. Müller, P. Erhart, and K. Albe, Thermodynamics of L10 ordering in FePt nanoparticles studied by Monte Carlo simulations based on an analytic bond-order potential, Phys. Rev. B 76, 155412 (2007); doi:10.1103/PhysRevB.76.155412
- PetGreWah15
M. V. G. Petisme, M. A. Gren, and G. Wahnström, Molecular dynamics simulation of WC/WC grain boundary sliding resistance in WC–Co cemented carbides at high temperature, Internat. J. Refractory Met. Hard Mater. 49, 75 (2015); doi:10.1016/j.ijrmhm.2014.07.037
Embedding methods¶
- StoZar80
M. J. Stott and E. Zaremba, Quasiatoms: An approach to atoms in nonuniform electronic systems, Phys. Rev. B 22, 1564 (1980); doi:10.1103/PhysRevB.22.1564
- PusNieMan81
M. J. Puska, R. M. Nieminen, and M. Manninen, Atoms embedded in an electron gas: Immersion energies, Phys. Rev. B 24, 3037 (1981); doi:10.1103/PhysRevB.24.3037
- Nor82
J. K. Nørskov, Covalent effects in the effective-medium theory of chemical binding: Hydrogen heats of solution in the 3d metals, Phys. Rev. B 26, 2875 (1982); doi:10.1103/PhysRevB.26.2875
- FinSin84
M. W. Finnis and J. E. Sinclair, A simple empirical N-body potential for transition metals, Phil. Mag. A 50, 45 (1984); doi:10.1080/01418618408244210
- DawBas83
M. S. Daw and M. I. Baskes, Semiempirical, Quantum Mechanical Calculation of Hydrogen Embrittlement in Metals, Phys. Rev. Lett., 50, 1285 (1983); doi:10.1103/PhysRevLett.50.1285
- DawBas84
M.S. Daw and M. I. Baskes, Embedded-atom method: Derivation and application to impurities, surfaces and other defects in metals, Phys. Rev. B 29, 6443 (1984); doi:10.1103/PhysRevB.29.6443
- FoiBasDaw86
M. S. Daw, S. M. Foiles, and M. I. Baskes, Embedded-atom-method functions for the fcc metals Cu, Ag, Au, Ni, Pd, Pt, and their alloys, Phys. Rev. B 33, 7983 (1986); doi:10.1103/PhysRevB.33.7983
- DawFoiBas93
M. S. Daw, S. M. Foiles, and M. I. Baskes, The embedded-atom method - A review of theory and applications, Mater. Sci. Rep. 9, 251 (1993); doi:10.1016/0920-2307(93)90001-U
- ErcTosPar86
F. Ercolessi, E. Tosatti, and M. Parrinello, Au (100) Surface Reconstruction, Phys. Rev. Lett. 57, 719 (1986); doi:10.1103/PhysRevLett.57.719
- ErcAda94
F. Ercolessi and J. B. Adams, Interatomic potentials from first-principles calculations: the force-matching method, Europhys. Lett. 26, 583 (1994); doi:10.1209/0295-5075/26/8/005
- MisMehPap01
Y. Mishin, M. J. Mehl, D. A. Papaconstantopoulos, A. F. Voter, and J. D. Kress, Structural stability and lattice defects in copper: Ab initio, tight-binding, and embedded-atom calculations, Phys. Rev. B 63, 224106 (2001); doi:10.1103/PhysRevB.63.224106
Modified embedded atom method¶
- Bas87
M. Baskes, Application of the Embedded-Atom Method to Covalent Materials: A Semiempirical Potential for Silicon, Phys. Rev. Lett. 59, 2666 (1987); doi:10.1103/PhysRevLett.59.2666
- Bas92
M. Baskes, Modified embedded-atom potentials for cubic materials and impurities, Phys. Rev. B 46, 2727 (1992); doi:10.1103/PhysRevB.46.2727
- LeeBasKim01
B.-J. Lee, M. I. Baskes, H. Kim, and Y. K. Cho, Second nearest-neighbor modified embedded atom method potentials for bcc transition metals, Phys. Rev. B 64, 184102 (2001); doi:10.1103/PhysRevB.64.184102
- LenSadAlo00
T. J. Lenosky, B. Sadigh, Babak, E. Alonso, V. V. Bulatov, T. Diaz de la Rubia, J. Kim, A. F. Voter, and J. D. Kress, Highly optimized empirical potential model of silicon, Modelling Simul. Mater. Sci. Eng. 8, 825 (2000); doi:10.1088/0965-0393/8/6/305
Angular dependent potential¶
- MisMehPap05
Y. Mishin, M.J. Mehl, D.A. Papaconstantopoulos, Phase stability in the Fe–Ni system: Investigation by first-principles calculations and atomistic simulations, Acta Mater. 53, 4029 (2005); doi:10.1016/j.actamat.2005.05.001