Bibliography

General

Car90

A. E. Carlsson, Beyond Pair Potentials in Transition Metals and Semiconductors, Solid State Physics 43, 1 (1990); series published by Academic Press, edited by H. Ehrenreich and D. Turnbull doi:10.1088/0965-0393/8/6/305

StiWeb84

F. H. Stillinger and T. A. Weber, Computer simulation of local order in condensed phases of silicon, Phys. Rev. B 31, 5262 (1984); doi:10.1103/PhysRevB.31.5262

Fre12

D. Frenkel, Simulations: the dark side, arXiv:1211.4440 [cond-mat.stat-mech]; download

Bond-order potentials

Abe85

G. C. Abell, Empirical chemical pseudopotential theory of molecular and metallic bonding, Phys. Rev. B 31, 6148 (1985); doi:10.1103/PhysRevB.31.6184

Ter86

J. Tersoff, New Empirical Model for the Structural Properties of Silicon, Phys. Rev. Lett. 56, 632 (1986); doi:10.1103/PhysRevLett.56.632

Ter88a

J. Tersoff, New empirical approach for the structure and energy of covalent systems, Phys. Rev. B 37, 6991 (1988); doi:10.1103/PhysRevB.37.6991

Ter88b

J. Tersoff, Empirical interatomic potential for silicon with improved elastic properties, Phys. Rev. B 38, 9902 (1988); doi:10.1103/PhysRevB.38.9902

Ter88c

J. Tersoff, Empirical Interatomic Potential for Carbon, with Applications to Amorphous Carbon, Phys. Rev. Lett. 61, 2879 (1988); doi:10.1103/PhysRevLett.61.2879

Ter89

J. Tersoff, Modeling solid-state chemistry: Interatomic potentials for multicomponent systems, Phys. Rev. B. 39, 5566 (1989); doi:10.1103/PhysRevB.39.5566

Bre89

D. W. Brenner, Relationship between the Embedded-Atom Method and Tersoff Potentials, Phys. Rev. Lett. 63, 1022 (1989); doi:10.1103/PhysRevLett.63.1022

Bre90

D. W. Brenner, Empirical potential for hydrocarbons for use in simulating the chemical vapor deposition of diamond films, Phys. Rev. B 42, 9458 (1990); doi:10.1103/PhysRevB.42.9458

BreSheHar02

D. W. Brenner, O. A. Shenderov, J. A. Harrison, S. J. Stuart, B. Ni and S. B. Sinnott, A second-generation reactive empirical bond order (REBO) potential energy expression for hydrocarbons, J. Phys. Cond. Matter 14, 783 (2002); doi:10.1088/0953-8984/14/4/312

AlbNorAve02

K. Albe, K. Nordlund, and R. S. Averback, Modeling the metal-semiconductor interaction: Analytical bond-order potential for platinum-carbon, Phys. Rev. B 65, 195124 (2002); doi:10.1103/PhysRevB.65.195124

AlbNorNor02

K. Albe, K. Nordlund, J. Nord, and A. Kuronen, Modeling of compound semiconductors: Analytical bond-order potential for Ga, As, and GaAs, Phys. Rev. B 66, 035205 (2002); doi:10.1103/PhysRevB.66.035205

NorAlbErh03

J. Nord, K. Albe, P. Erhart, and K. Nordlund, Modelling of compound semiconductors: Analytical bond-order potential for gallium, nitrogen and gallium nitride}, J. Phys. Cond. Matter 15, 5649 (2003); doi:10.1088/0953-8984/15/32/3245

ErhAlb05

P. Erhart and K. Albe, Analytical Potential for Atomistic Simulations of Silicon and Silicon Carbide, Phys. Rev. B 71, 035211 (2005); doi:10.1103/PhysRevB.71.035211

ErhJusGoy06

P. Erhart, N. Juslin, O. Goy, K. Nordlund, R. Müller, and K. Albe, Analytic bond-order potential for atomistic simulations of zinc oxide, J. Phys. Cond. Matter 18, 6585 (2006); doi:10.1088/0953-8984/18/29/003

JusErhTra05

N. Juslin, P. Erhart, P. Träskelin, J. Nord, K. Henriksson, E. Salonen, K. Nordlund, and K. Albe, Analytical interatomic potential for modeling nonequilibrium processes in the W-C-H system, J. Appl. Phys. 98, 123520 (2005); doi:10.1063/1.2149492

MulErhAlb07a

M. Müller, P. Erhart, and K. Albe, Analytic bond-order potential for bcc and fcc iron - comparison with established embedded-atom method potentials, J. Phys. Cond. Matter 19, 326220 (2007); doi:10.1088/0953-8984/19/32/326220

MulErhAlb07b

M. Müller, P. Erhart, and K. Albe, Thermodynamics of L10 ordering in FePt nanoparticles studied by Monte Carlo simulations based on an analytic bond-order potential, Phys. Rev. B 76, 155412 (2007); doi:10.1103/PhysRevB.76.155412

PetGreWah15

M. V. G. Petisme, M. A. Gren, and G. Wahnström, Molecular dynamics simulation of WC/WC grain boundary sliding resistance in WC–Co cemented carbides at high temperature, Internat. J. Refractory Met. Hard Mater. 49, 75 (2015); doi:10.1016/j.ijrmhm.2014.07.037

Embedding methods

StoZar80

M. J. Stott and E. Zaremba, Quasiatoms: An approach to atoms in nonuniform electronic systems, Phys. Rev. B 22, 1564 (1980); doi:10.1103/PhysRevB.22.1564

PusNieMan81

M. J. Puska, R. M. Nieminen, and M. Manninen, Atoms embedded in an electron gas: Immersion energies, Phys. Rev. B 24, 3037 (1981); doi:10.1103/PhysRevB.24.3037

Nor82

J. K. Nørskov, Covalent effects in the effective-medium theory of chemical binding: Hydrogen heats of solution in the 3d metals, Phys. Rev. B 26, 2875 (1982); doi:10.1103/PhysRevB.26.2875

FinSin84

M. W. Finnis and J. E. Sinclair, A simple empirical N-body potential for transition metals, Phil. Mag. A 50, 45 (1984); doi:10.1080/01418618408244210

DawBas83

M. S. Daw and M. I. Baskes, Semiempirical, Quantum Mechanical Calculation of Hydrogen Embrittlement in Metals, Phys. Rev. Lett., 50, 1285 (1983); doi:10.1103/PhysRevLett.50.1285

DawBas84

M.S. Daw and M. I. Baskes, Embedded-atom method: Derivation and application to impurities, surfaces and other defects in metals, Phys. Rev. B 29, 6443 (1984); doi:10.1103/PhysRevB.29.6443

FoiBasDaw86

M. S. Daw, S. M. Foiles, and M. I. Baskes, Embedded-atom-method functions for the fcc metals Cu, Ag, Au, Ni, Pd, Pt, and their alloys, Phys. Rev. B 33, 7983 (1986); doi:10.1103/PhysRevB.33.7983

DawFoiBas93

M. S. Daw, S. M. Foiles, and M. I. Baskes, The embedded-atom method - A review of theory and applications, Mater. Sci. Rep. 9, 251 (1993); doi:10.1016/0920-2307(93)90001-U

ErcTosPar86

F. Ercolessi, E. Tosatti, and M. Parrinello, Au (100) Surface Reconstruction, Phys. Rev. Lett. 57, 719 (1986); doi:10.1103/PhysRevLett.57.719

ErcAda94

F. Ercolessi and J. B. Adams, Interatomic potentials from first-principles calculations: the force-matching method, Europhys. Lett. 26, 583 (1994); doi:10.1209/0295-5075/26/8/005

MisMehPap01

Y. Mishin, M. J. Mehl, D. A. Papaconstantopoulos, A. F. Voter, and J. D. Kress, Structural stability and lattice defects in copper: Ab initio, tight-binding, and embedded-atom calculations, Phys. Rev. B 63, 224106 (2001); doi:10.1103/PhysRevB.63.224106

Modified embedded atom method

Bas87

M. Baskes, Application of the Embedded-Atom Method to Covalent Materials: A Semiempirical Potential for Silicon, Phys. Rev. Lett. 59, 2666 (1987); doi:10.1103/PhysRevLett.59.2666

Bas92

M. Baskes, Modified embedded-atom potentials for cubic materials and impurities, Phys. Rev. B 46, 2727 (1992); doi:10.1103/PhysRevB.46.2727

LeeBasKim01

B.-J. Lee, M. I. Baskes, H. Kim, and Y. K. Cho, Second nearest-neighbor modified embedded atom method potentials for bcc transition metals, Phys. Rev. B 64, 184102 (2001); doi:10.1103/PhysRevB.64.184102

LenSadAlo00

T. J. Lenosky, B. Sadigh, Babak, E. Alonso, V. V. Bulatov, T. Diaz de la Rubia, J. Kim, A. F. Voter, and J. D. Kress, Highly optimized empirical potential model of silicon, Modelling Simul. Mater. Sci. Eng. 8, 825 (2000); doi:10.1088/0965-0393/8/6/305

Angular dependent potential

MisMehPap05

Y. Mishin, M.J. Mehl, D.A. Papaconstantopoulos, Phase stability in the Fe–Ni system: Investigation by first-principles calculations and atomistic simulations, Acta Mater. 53, 4029 (2005); doi:10.1016/j.actamat.2005.05.001